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The treatment metastatic non-small cell lung cancer (NSCLC) is largely influenced by the 
incorporation of immune checkpoint inhibitors (ICI) in the frontline setting. There are 
several ICI approved for the management of NSCLC based on the PD-L1 expression of the 
tumors. PD-L1 is a controversial biomarker with various inconsistencies in expression 
owing to temporal and spatial heterogeneity. Tumor mutational burden is another much 
studied biomarker associated with its own challenges and questionable concordance with 
tumor PD-L1 expression. In this article, we aim to discuss the challenges associated with 
the existing biomarkers, highlighting the need for emerging biomarkers that can help 
with decision making in the management of this there where several therapeutic options 
exist. There are emerging “me too” PD-1/PD-L1 drugs which may serve its purpose in 
many counties where there is limited access to current approved ICIs. What is 
increasingly apparent is the need to move the needle forward in the treatment of NSCLC 
and we will discuss the challenges associated with the current therapeutic landscape and 
the emerging checkpoints and the future directions that are being explored in the 
management of metastatic NSCLC. 
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Take Home Message    
• There are several FDA approved immune-

checkpoint inhibitors in the management of 
metastatic NSCLC; pembrolizumab, ate-
zolizumab, cemiplimab, nivolumab/ipili-
mumab and durvalumab/tremelimumab. 

• The Blueprint studies validated the concor-
dance between various assays that were uti-
lized to measure PD-L1 in landmark trials 
but there is an increasing use of laboratory-
based assays amongst practicing oncologists 
which are yet to be validated. 

• Approved ICIs are based on PD-L1 expres-
sion, but this remains to be an imperfect bio-
marker with modest overall response rates 
even in high PD-L1 groups (  50%), high-
lighting the need for newer biomarkers. 

• Tumor Mutational Burden (TMB) is another 
biomarker which has shown positive correla-
tion in those with a high TMB. However, sig-
nificant variability in methods used to calcu-
late TMB remains a barrier to the 
reproducibility of this biomarker. 

• Despite the numerous PD-1/PD-L1 inhibitors 
in the market, there are still numerous drugs 
in this space being developed with limited 
utility in the United States of America and 
the European Union. There may be a niche 
for these drugs in developing countries 
where the incorporation of ICI is still not 
standard of care due to limitations in avail-
ability. 

INTRODUCTION 

The therapeutic evolution of non-small cell lung cancer has 
been dramatic over the past decade with the discovery of 
oncogenic driver mutations and the advent of biomarker 
guided management. The journey to the discovery of im-
mune checkpoints dates back to the 1980s, when scientists 
first discovered T-cell receptors (TCR) which eventually led 
to the understanding of the major signals required for T-
cell activation.1‑3 By the mid 90’s, CTLA-4 (cytotoxic T-
lymphocyte–associated antigen 4), a homolog of CD28 was 
discovered which functioned as an inhibitory program on 
activated T-cells thereby serving as a inhibition to the T-
cells.4,5 In 1992, PD-1 (programmed cell death receptor 1), 
a transmembrane protein similar to CTLA-4, expressed on 
T-cells was discovered to negatively regulate the immune 
response of T-cells by interfering with receptor signaling.6 

In 1999, B7-H1, also known as PD-L1 (programmed death 
ligand 1) was discovered and its blockade led to increased 
levels of IL-10 and IL-2, thereby stimulating T-cells.7 This 
led to the development of immune checkpoint inhibitors 
(ICIs). The CTLA-4 inhibitor ipilimumab was approved by 

the FDA in 2011 for the treatment of untreated metastatic 
melanoma in combination with chemotherapy after a land-
mark trial showed an OS benefit.8 The first ICI that was 
approved for the treatment of lung cancer was nivolumab. 
CHECKMATE-017 and CHECKMATE-057 were phase 3 trials 
that were designed to evaluate the efficacy of nivolumab in 
the management of squamous and non-squamous metasta-
tic NSCLC and both trials showed an OS benefit leading to 
its approval in previously treated patients.9,10 Similarly in 
2016, pembrolizumab was approved after a trial showed an 
OS benefit in patients with previously treated metastatic 
NSCLC.11 Currently, various approvals exist for the combi-
nation of ICIs with chemotherapy or ICI alone in the front-
line management of metastatic NSCLC based on the PD-
L1 status.12 The approved immune checkpoint inhibitors 
include pembrolizumab, atezolizumab, cemiplimab, 
nivolumab/ipilimumab and durvalumab/tremelimumab. In 
table 1, we highlight the landmark trials that led to the 
approval of these agents in the management of metastatic 
NSCLC. 

Despite these advances in the field of lung cancer and 
immunotherapy, several challenges continue to limit pa-
tient outcomes. In this review, we discuss the pressing chal-
lenges and controversies in the immunotherapy landscape 
in non-small cell lung cancer. We first discuss the issues 
with PD-L1 as an optimal biomarker and segue into the 
utility of using tumor mutational burden as a biomarker for 
immune checkpoint inhibitors. We also address other PD1/
PD-L1 inhibitors in development and the lack of benefit as-
sociated with multiple agents of the same class with simi-
lar efficacy and safety profiles. Lastly, we also shine light on 
newer immunotherapy approaches and inform the reader 
on the future directions in this field. 

PD-L1 EXPRESSION AS A PREDICTIVE 
BIOMARKER 

There are several mechanisms which regulate the expres-
sion of PD-1/PD-L1 proteins in tumor cells (TCs).34,35 PD-
L1 is coded by CD274 gene located on chromosome 9p. Mu-
tations in the JAK-STAT pathway result in the amplification 
and translocation of CD274 leading to its upregulation. Mu-
tations in genes like TP53, KRAS, STK11 and NFE2L2, are 
known to predict the PD-L1 expression.36 High levels of tu-
mor PD-L1 expression has been shown to corroborate with 
superior response to ICIs. A positive PD-L1 expression is 
identified as a TPS ≥1% whereas high PD-L1 expression is 
identified at a cut off ≥50%. Studies describe a wide range 
of PD-L1 positivity in NSCLC from 24-60% with prevalence 
in the <1%, 1-49% and ≥50% groups being 33-60%, 38-42% 
and 13-28% respectively.37‑39 

One of the mechanisms of PD-L1 expression is guided by 
the exposure to IFN-γ released by the T effector cells which 
increases the expression of PD-L1 on other cellular com-
partments including tumor infiltrating immune cells (ICs). 
Therefore, quantification of PD-L1 expression not only in-
cludes the tumor proportions score (TPS) but also the de-
gree of PD-L1 expressed on ICs. The significance of immune 
cells expression of PD-L1 is an evolving subject but it has 
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Table 1. Trials supporting the frontline incorporation of immune checkpoint inhibitors.          

Trial NCT Phase Number 
of 
patients 

Histology Treatment Arm 
(TA) 

Control Arm 
(CA) 

Biomarker 
Cut off 

Primary End 
point 

Results 

KEYNOTE-02413,14 NCT02142738 3 305 Sq/Non-
sq 

Pembrolizumab Platinum 
doublet 
chemotherapy 

PDL1 ≥ 50% PFS mPFS: TA- 10.3 months (6.7 - NR) vs CA- 
6.0 months (4.2 - 6.2) p<0.001 

mOS at 5-yrs; TA- 26.3 vs CA- 13.4 
months; HR 0.62 (95% CI, 0.48-0.81) 

KEYNOTE-04215 NCT02220894 3 1275 Sq/Non-
sq 

Pembrolizumab Platinum 
doublet 
chemotherapy 

PD-L1 ≥ 1% OS PD-L1 ≥ 1% 
OS PD-L1 ≥ 50% 

mOS: PD-L1 ≥ 1%: TA- 16·7 months 
(13·9–19·7) vs CA- 12·1 months 
(11·3–13·3); HR 0.69 (95% CI, 
0·56–0·85) p=0·0003) 

mOS: PD-L1 ≥ 50%: TA- 20·0 months 
(15·4 – 24·9) vs CA- 12·2 months (10·4 
–14·2); HR 0.81 (95% CI, 0·71–0·93) 
p=0·0018 

KEYNOTE-18916 NCT02578680 3 616 Non-sq Pembrolizumab + 
Platinum doublet 
chemotherapy 

Platinum 
doublet 
chemotherapy 

Allcomers 
including 
PD-L1<1% 

OS, PFS mOS: TA- NR vs CA- 11.3 months (95% 
CI, 8.7 -15.1; HR 0.49 (95% CI, 0.38 - 
0.64) P<0.001 

mPFS: TA- 8.8 months (7.6 - 9.2) vs CA- 
4.9 months (4.7 - 5.5); HR 0.52 (95% CI, 
0.43-0.64) P<0.001 

CHECKMATE-02617 NCT02041533 3 541 Sq/Non-
Sq 

Nivolumab Platinum 
doublet 
chemotherapy 

PD-L1 ≥ 1% PFS in PD-L1 ≥ 
5% 

mPFS: TA- 4.2 months (3.0 - 5.6) vs CA- 
5.9 months (5.4 - 6.9); HR 1.15 (95% CI, 
0.91 - 1.45) p=0.25 

CHECKMATE-22718 NCT02477826 3 1739 Sq/Non-
Sq 

Arm A: 
Nivolumab 
Arm B: 
Nivolumab + 
Ipilimumab 

Platinum 
doublet 
chemotherapy 

All comers OS in PD-L1 ≥ 1% 
in Nivo/Ipi arm 
compared to CA 

mOS: TA- 17.1 months (15.0 - 20.1) vs 
CA: 14.9 months (12.7 - 16.7); HR 0.79 
(97.72% CI, 0.65 - 0.96) p=0.007 

CHECKMATE-9LA19 NCT03215706 3 719 Sq/Non-
Sq 

Nivolumab + 
Ipilimumab+ 
Platinum doublet 
chemotherapy 

Platinum 
doublet 
chemotherapy 

All comers OS mOS: TA- 14·1 months (95% CI 
13·2–16·2) vs CA- 10·7 months 
9·5–12·4; stratified HR 0·69 (96·71% CI 
0·55–0·87) p=0·00065 

IMpower15020 NCT02366143 3 692 Non-Sq Atezolizumab 
plus BCP 

BCP Teff gene 
expression 
signature 
(high and 
low) 

IA-PFS in all 
patients 
and among 
patients with high 
Teff gene 
expression 

mPFS: (TA) 8.3 months vs. (CA) 6.8 
months; HR 
0.62; 95% CI, 0.52 to 0.74; P<0.001) 
mPFS in Teff-high population were 11.3 
months (TA) and 6.8 months (CA) (HR 
0.51 [95% CI, 0.38 to 0.68]; P<0.001). 
mOS: (TA) 19.2 months vs. (CA) 
14.7 months; HR, 0.78; 95% CI, 0.64 to 
0.96; P = 0.02 
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Trial NCT Phase Number 
of 
patients 

Histology Treatment Arm 
(TA) 

Control Arm 
(CA) 

Biomarker 
Cut off 

Primary End 
point 

Results 

IMpower 13121 NCT02367794 3 683 Sq Atezolizumab 
with CnP 

CnP PD-L1 sub 
grouped into 
TC0-3 and 
IC0-3 

Coprimary end 
points IA-PFS and 
OS 

mPFS: (TA) 6.3 vs (CA) 5.6 m; HR 0.71, 
95% CI: 
0.60–0.85; p= 0.0001) 
mOS: (TA) 14.2 vs (CA) 13.5 months HR= 
0.88, 95% CI: 0.73–1.05; p= 0.16 

IMpower 11022,23 NCT02409342 3 554 Sq/Non-
Sq 

atezolizumab platinum-
based doublet 
chemotherapy 

PD-L1 ≥1% 
of TC or IC 

OS OS: 19.9 (TA) 
versus 16.1 (CA) months HR= 0.87, 95% 
CI: 0.66–1.14, p=0.3091 

IMpower 13024 NCT02367781 3 723 
(2:1) 

Non-Sq ACnP CnP PD-L1 
tumor 
Status (TC or 
IC) 

OS and PFS mOS: (TA) 18·6 vs (CA) 13·9 months, HR 
0·79 [95% CI 0·64–0·98]; p=0·033) 
mPFS: (TA) 7·0 vs (CA) 5·5 months HR 
0·64 [95% CI 0·54–0·77]; p<0·0001] 

IMpower 13225 NCT02657434 3 578 Non-Sq APP Chemotherapy PD-L1 
tumor 
Status (TC or 
IC) 

OS and PFS mPFS: (TA) 7.6 versus (CA) 5.2 m, HR 
0.60, 95% CI: 0.49–0.72, p < 0.0001) 
mOS: (TA) 17.5 
versus (CA) 13.6 m; HR 0.86, 95% CI: 
0.71–1.06, p= 0.1546) 

BF1RST26 NCT02848651 2 152 IIIB–IVB 
Sq/Non-
Sq 

atezolizumab None (single 
arm) 

bTMb≥16 ORR and PFS At bTMB ≥ 16, mPFS: 5 months versus 
3.5 months in patients in the bTMB < 16 
(HR = 0.80, 90% CI: 0.54, 1.18, P = 0.35) 
ORR: for bTMB ≥ 16 versus bTMB < 16 
subgroups was 35.7% versus 5.5% P < 
0.0001 

BFAST27 NCT03178552 3 471 Sq/Non-
Sq 

atezolizumab chemotherapy bTMB of 
≥10 

IA-PFS in 
population with 
bTMB of ≥16 

mPFS: (TA) 4.5 vs (CA) 4.3 months. HR, 
0.77; 95% CI: 0.59, 1.00; P = 0.053 

POSEIDON28 NCT03164616 3 1013 
(1:1:1) 

Sq/Non-
Sq 

Tremelimumab 
plus durvalumab 
and 
chemotherapy 
(TDCT) OR 
durvalumab plus 
chemotherapy 
(DCT) 

chemotherapy PD-L1 BIRC-PFS and OS 
for DCT versus 
CT 

mPFS: 5.5 (DCT) vs 4.8 months (CT), HR, 
0.74; 95% CI, 0.62 to 0.89; P= .0009 
OS: 13.3 (DCT) vs 11.7 (CT) months, HR, 
0.86; 95% CI, 0.72 to 1.02; P = .0758; 
24-month OS: (DCT) 29.6% v (CT) 22.1% 

mPFS: 6.2 (TDCT) vs 4.8 (CT) months, 
HR, 0.72; 95% CI, 0.60 to 0.86; P = .0003 
OS: 14 (TDCT) vs 11.7 (CT) months, HR, 
0.77; 95% CI, 0.65 to 0.92; P = .0030 
24-month OS: 32.9% (TDCT) v 22.1% 
(CT) 
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Trial NCT Phase Number 
of 
patients 

Histology Treatment Arm 
(TA) 

Control Arm 
(CA) 

Biomarker 
Cut off 

Primary End 
point 

Results 

MYSTIC29 NCT02453282 3 488 
(1:1:1) 

Sq/Non-
Sq 

Durvalumab (D) 
OR durvalumab 
plus 
tremelimumab 
(DT) 

platinum-
based doublet 
chemotherapy 

PD-L1≥ 25% 
(exploratory) 
bTMB≥20 
mut/Mb 

OS for 
durvalumab vs 
chemotherapy 
OS & PFS for 
durvalumab plus 
tremelimumab vs 
chemotherapy. 

mOS: (D) 16.3 versus vs (CT) 12.9 
months, HR 0.76; 97.54% CI, 0.56-1.02; 
P= .04 
mOS: (DT) 11.9 versus (CT) 12.9 months, 
HR vs chemotherapy, 0.85; 98.77% CI, 
0.61-1.17; P = .20 
mPFS: (DT) 3.9 vs (CT) 5.4 months, HR, 
1.05; 99.5% CI, 0.72-1.53; P = .71 

EMPOWER-Lung 130 NCT03088540 3 563 Sq/Non-
Sq 

cemiplimab platinum-
doublet 
chemotherapy 

PD-L1 ≥50% OS and PFS as 
assessed by BIRC 

mOS: (TA) not reached versus (CA) 14·2 
months, HR 0·57 [0·42–0·77]; p=0·0002 
mPFS: (TA) 8·2 months versus (CA) 5·7 
months HR 0·54 [0·43–0·68]; p<0·0001 

EMPOWER-Lung 331 NCT03409614 3 466 
(2:1) 

Sq/Non-
Sq 

cemiplimab plus 
platinum-doublet 
chemotherapy 

platinum-
doublet 
chemotherapy 

None OS mOS: (TA) 21.9 vs (CA) 13.0 months, HR 
= 0.71; 95% CI, 0.53–0.93; P= 0.014 
mPFS: (TA) 8.2 vs (CA) 5.0 months, HR = 
0.56; 95% 
CI, 0.44–0.70; P < 0.0001 

ORIENT-1232 NCT03629925 3 357 Sq sintilimab plus 
Gemcitabine and 
platinum 

Gemcitabine 
and platinum 

None PFS as assessed 
by BIRC 

mPFS: (TA) 5.5 vs (CA) 4.9 months HR= 
0.536 [95% CI: 0.422–0.681], p 
<0.00001 

ORIENT-1133 NCT03607539 3 397 
(2:1) 

Nonsq sintilimab plus 
pemetrexed 
and platinum 

pemetrexed 
and platinum 

None PFS as assessed 
by BIRC 

mPFS: (TA) 8.9 versus (CA) 5.0 months, 
HR, 0.482, 95% CI: 0.362–0.643; p< 
0.00001 

Sq- squamous, non sq – non-squamous, OS- overall survival, PFS- progression free survival, mOS- median OS, mPFS- median PFS, APP: Atezolizumab with pemetrexed based platinum doublet; BCP: Bevacizumab with Carboplatin and paclitaxel; BIRC: blinded independent 
review committee; CI: Confidence interval; CnP: Carboplatin with nab paclitaxel; HR: Hazard ratio; IA: investigator assessed; IC: immune cells: TC: Tumor cells. 
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been hypothesized that the PD-L1 protein of ICs binds with 
the PD-1 of T cells to facilitate the immune evasion.40 

Various FDA approved assays for PD-L1 measurement 
were compared in the blueprint studies to promote consis-
tency in testing. The assays include: 22C3 pharmDx Dako 
(pembrolizumab and cemiplimab), SP263 (atezolizumab) 
and 28-8 pharmDx Dako (nivolumab/ipilimumab). SP142 
Ventana assay (atezolizumab) is the only assay approved 
for testing of PD-L1 expression on ICs.41,42 The Blueprint 1 
study demonstrated that the three assays 22C3, 28–8, and 
SP26 were comparable in their assessment of PD-L1 expres-
sion on TCs, whereas the SP-142 PD-L1 assay stained fewer 
TCs.43 Blueprint 2 confirmed these results and demon-
strated that a 5th assay, the 73-10 assay showed greater 
staining of the TCs. However, when studied in ICs, low level 
of staining and concordance was noted between all 5 as-
says.44 In the real world, more cost-effective and easily 
available laboratory developed tests (LDTs) are also used for 
assessing PD-L1 expression. The concordance of such tests 
with the studied assays have not been fully validated and 
remains a challenge.45,46 

Despite the volume of studies correlating response to 
immunotherapy with PD-L1 expression, this remains a con-
troversial biomarker. Intra-tumoral temporal heterogene-
ity, spatial heterogeneity and variable concordance be-
tween FDA approved assays and LDTs raises questions 
regarding the predictive and prognostic value of this bio-
marker.47‑50 In KEYNOTE-024, the overall response rate 
(ORR) of patients with a PD-L1 TPS  50% to pem-
brolizumab was only 45% meaning that even in patients 
with a pre-defined high PD-L1 expression, a majority of the 
population did not respond to the check-point inhibitor as 
a monotherapy.14 Similarly, in CHECKMATE 227, the objec-
tive response rate in the PD-L1 <1% was around 27% and a 
significant improvement in overall survival was noted with 
dual check-point inhibition when compared to chemother-
apy.18 These varying responses with no clear correlation 
with the use of dual ICI versus a single ICI adds to the skep-
ticism regarding PD-L1 as a predictive biomarker. 

The inter-tumoral discordance in PD-L1 expression of 
primary tumor when compared metastatic sites particularly 
the brain has also been highlighted.51‑54 Studies have 
shown that various factors affect tumor heterogeneity such 
as histology, surgical status, targeted therapy use, prior 
chemotherapy, immunotherapy use and antibiotic use.55 

Herbst et al. demonstrated the dynamic variability of PD-
L1 expression in patients treated with atezolizumab, show-
ing an increase in PD-L1 expression with decrease in tumor 
volume.55,56 

The utility of PD-L1 as a predictive biomarker in patients 
with other driver mutations also has limitations. A meta-
analysis showed that the use of ICIs had no OS benefit in 
the second line setting in NSCLC patients with an EGFR 
mutation.57 Another phase-2 trial studying pembrolizumab 
in PD-L1 positive and EGFR mutant NSCLC was ceased due 
to futility.58 The reason behind the lack of response to ICIs 
in EGFR mutant NSCLC has been thought to be due to low 
PD-L1 expression in tumors harboring an EGFR mutation.59 

However, there are studies showing conflicting results and 

others showing a lack of correlation between PD-L1 expres-
sion in tumors with driver mutations.60‑63 

Despite the breadth of data depicting PD-L1 to be an im-
perfect biomarker, obtaining the PD-L1 expression status is 
the standard of care in the management of patients with 
metastatic NSCLC. 

TUMOR MUTATIONAL BURDEN AS A 
PREDICTIVE BIOMARKER FOR IMMUNE 
CHECKPOINT INHIBITION 

Acquired somatic mutations in tumor DNA can potentially 
be translated into neo-proteins on the cellular surface 
which act as neoantigens. These neoantigens are recog-
nized by the T cells using the MHC pathways, subsequently 
activating the immune cascade. Tumor cells utilize differ-
ent pathways to evade this immune surveillance, like the 
PD-1/PD-L1 and CTLA-4 axis. Therefore, in addition to PD-
L1, the neoantigen load or the bulk of mutations can also 
have a predictive role as a biomarker. 

Tumor mutational burden (TMB) is defined as the total 
number of acquired nonsynonymous somatic mutations per 
megabase of tumor DNA.64 The burden of mutations was 
initially measured using the whole exon sequencing on 
both tumor DNA as well as matched normal DNA. Though 
only non-synonymous mutations lead to changes in protein 
structures thereby contributing to tumor immunogenicity, 
synonymous mutations have also been used in the calcu-
lations of TMB by different platforms.65 The rationale to 
include all mutations is to improve the resolution of TMB 
(using the synonymous mutations as a surrogate for total 
mutations burden), especially in samples with lowed DNA 
load.65 Recently specific gene directed next generation se-
quencing has been validated for TMB measurement and two 
panels (for tissue TMB) have been approved by the FDA, 
F1CDx (pembrolizumab in solid tumors with high TMB) by 
Foundation Medicine Inc. and MSK-IMPACT by the Memo-
rial Sloan Kettering Cancer Center. 

The method of calculation of TMB is variable. Different 
assays have used different methods resulting in poor re-
producibility of the results.66 Several assays use proprietary 
germline variant datasets for filtering germline mutations 
and some assays use paired tumor and normal tissue to 
subtract germline alterations and calculate the TMB. Tu-
mor-only sequencing methods have been shown to over-
estimate TMB compared to the germline-sequenced and 
subtracted TMB methods. This may particularly impact mi-
nority races that have a low representation in most 
germline variant libraries.67‑69 Other issues with TMB cal-
culation are the inclusion of different mutations types 
(most assays use single nucleotide variants but some also 
include insertions and deletions, or synonymous muta-
tions), corrections for formalin induced DNA damage (dif-
ferent assays use different methods for compensations for 
formalin induced deamination), size of the captured coding 
regions, and the pre-analytical processing which is differ-
ent for different assays.65,70‑73 

Blood based assays (like NCC-GP150) to measure TMB 
using circulating tumor DNA has been tested as surrogate 
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of tissue samples. Though no assay has been approved by 
the FDA, significant correlation (both technical and clini-
cal) has been demonstrated between the blood TMB (bTMB) 
and tumor TMB (tTMB) though some studies have shown a 
low concordance owing to tumor heterogeneity.74,75 bTMB 
has been demonstrated to be a predictor of clinical re-
sponse to ICI in NSCLC cases.76,77 Tumor heterogeneity has 
been graded using several methods and has been demon-
strated to influence both tTMb and bTMB.78 Theoretically 
bTMB represents a more holistic picture of the cellular and 
genomic diversity within the tumor tissue, but there are 
limited studies testing this concept. In a study with 32 op-
erated cases of NSCLC muti-region tTMB was found to cor-
relate with both single region tTMB as well as bTMB and 
high intra-tumoral heterogeneity cases were found to have 
higher chances of high-TMB when evaluated using muti-re-
gions of tumor tissue.79 

The prognostic role of TMB in NSCLC has also been an-
alyzed in systematic review including eight cohorts. Using 
different cut offs, amongst the high TMB groups (≥10 mut/
Mb or ≥ 243 somatic mutations or ≥20 mut/Mb), ICIs were 
superior to chemotherapy in terms of ORR, PFS and OS. 
This finding was not seen in the low TMB subgroup.17,18,

29,80 In addition, though PFS has been shown to be higher 
in subjects with high-TMB in tumor tissue, the impact on 
OS has not seen similar improvements, thereby questioning 
the role of tTMB in patient selection.18,81 

No concordance between PD-L1 levels (assessed using 
22C3 platforms) and TMB (assessed using whole exome 
sequencing) in NSCLC cases have been found.29,82 Even 
though there have been no head-to-head comparisons, PFS 
and ORR amongst patients with high PD-L1 expression has 
been found to be higher than in patients with high TMB.76,

83 

CURRENT STATE OF IMMUNE-CHECKPOINT 
INHIBITORS AND THE UTILITY OF “ME TOO” 
DRUGS 

While the large number of FDA approved agents available 
for targeting the PD-1/PD-L1/CTLA-4 pathway has opened 
the doors in-terms of providing various options for the 
care of patients, they have also been a source of confusion 
for many oncologists practicing in the United States with 
regard to teasing out the differences in these regimens, 
their approved indications, and maneuvering the nuances 
in choosing the right ICIs for their patients.84 While there 
are no head-to-head trials comparing various ICIs, a recent 
meta-analysis has compared various approved ICI regimens 
and suggested that there may be differences in outcomes 
based on the PD-L1 status and metastatic sites of pa-
tients.85 

There is a palpable need to move the needle forward in 
the treatment of metastatic NSCLC by unlocking the poten-
tial of other immune checkpoints. There have been several 
ongoing trials targeting other pathways with emerging re-
sults. One such pathway that is being studied is the T cell 
immunoglobulin and ITIM domain (TIGIT). The TIGIT pro-
tein expression is mainly in T-lymphocytes and NK cells. 

It competes with CD226 to deliver an inhibitory signal, 
thereby causing an immunosuppressive effect by decreas-
ing T-cell activation, function and inhibiton of NK cell ac-
tivity.86‑88 Interim results from the phase-3 trial SKY-
SCRAPER (NCT04294810) assessing the combination of 
atezolizumab combined with tiragolumab (anti-TIGIT) in 
metastatic NSCLC did not meet the co-primary endpoint 
of PFS. Due to immature OS data, the study is being con-
tinued. The recently presented interim analysis results of 
the phase-2 ARC-7 study showed a superior PFS and OS of 
the doublet domvanalimab (anti-PD-1) plus zimberelimab 
(anti-TIGIT) and the triplet domvanalimab plus zimbere-
limab plus etrumadenant (A2a/b adenosine receptor an-
tagonist) when compared to domvanalimab alone in pa-
tients with PD-L1 high metastatic NSCLC.89 In the phase-2 
CITYSCAPE trial, an improvement in PFS was seen with the 
incorporation of anti-TIGIT tiragolumab plus atezolizumab 
compared to ICI alone.90 

The challenges associated with ICIs in low and middle-
income countries (LMIC) are different. The easy availability 
of ICIs that exist in upper- middle income and high-income 
countries have not percolated into LMICs due to multiple 
barriers such as cost, availability, physician preference and 
lack of ethnic-diverse representation in clinical trials. 
Ravikrishna et al., recently showed that in a 5-year time 
period including more than 15,000 patients in India whom 
were eligible for ICIs, only about 2.8% received them.91 

Nazha et al., have described the involvement of Asian rep-
resentation in trials to be around 6%.92 In China, there 
are five PD/PD-L1 agents (camrelizumab, sintilimab, 
tislelizumab, toripalimab, sugemalimab) have been granted 
approval. However, these drugs have not made their way to 
many other Asian countries. The Chinese anti-PD-1 drug 
sintilimab, was recently denied approval by the FDA ap-
proval based on the ORIENT-11 trial,93 partially due to a 
majority of the patients enrolled being non-US based.84 

The manufacturer of this drug had proposed a reduction of 
the prices of other similar drugs in the market by 40-90%, 
speaking to the much-discussed speculation regarding im-
provement in competitive pricing with the development of 
“me too” drugs. However, whether this theory holds true 
or not is still debatable with existing evidence suggesting 
that “brand-brand” competition is historically not known 
to lower the prices of drugs of the same class.94 The emer-
gence of these “me too” drugs while, unlikely to be ben-
eficial in markets such as the United States and European 
Union, could solve a pressing issue in other countries where 
ICIs are not easily accessible. Manufacturing companies can 
seek to include ethnically diverse populations from coun-
tries like India, for example, where patient recruitment is 
unlikely to be a major issue. This will solve the issues of 
finding a niche for these “me too” drugs while also improv-
ing access to equitable care across other countries. 

EMERGING CHECKPOINT PATHWAYS 

There continues to be progress in the field of checkpoint in-
hibition as numerous other immune checkpoints have been 
identified as potential targets for inhibition and drug de-
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velopment. Table 2 highlights many of the emerging check-
points. 

The TACTI-002 (NCT03625323) study studied the com-
bination of the soluble anti-LAG-3 protein, eftilagimod al-
pha with pembrolizumab in the front-line management of 
metastatic non-small cell lung cancer showed an ORR in 
the intention to treat (ITT) population of 37% with a dis-
ease control rate was around 73% with more mature data 
pending.115 Modest results have also been seen in trials 
studying the combination of TIM-3 with PD-L1 inhibition 
due to potential synergistic effects of the two drugs. One 
phase II trial (NCT02608268) studied MBG453 (anti-TIM-3) 
plus spartalizumab (anti-PD-1) in patients with progressive 
metastatic NSCLC and demonstrated a durable clinical ben-
efit in about 42% of the NSCLC.116 There are several studies 
evaluating the anti-tumor effects of 4-1BB agonists alone 
and in combination with ICIs.12 Two drugs, urelumab 
(BMS-663513) and utomilumab (PF-05082566) with initial 
results showed only a modest response in solid tumors.117,

118 Monalizumab, an anti-NKG2A humanized monoclonal 
antibody is being studied in the non-metastatic setting in 
the management of NSCLC. The interim analysis from the 
phase-2 COAST study demonstrated promising results with 
a superior ORR of monalizumab plus durvalumab when 
compared to durvalumab alone.119 Figure 1 shows newer 
checkpoints and their ligands. 

The road thus far, has been challenging with many of 
the mentioned therapies showing suboptimal activity when 
used alone. The synergistic activity of these drugs when 
used with existing checkpoint inhibitors remains to be fur-
ther explored with multiple concerns regarding tolerability 
and more severe immune related adverse events. There is a 
need for further research in identifying biomarkers and for 
the development of strategies that can help turn “cold” tu-
mor microenvironments (TME) to “hot” TME, thereby in-
creasing the response to ICIs.121 

CONCLUSION 

Immunotherapy in lung cancer still has a long way to go. 
The immune checkpoint inhibitors, especially PD-1/PDL1 
targeted agents, have been shown to significantly improve 
clinically relevant endpoints. But despite the overwhelming 
success, patient selection remains an imperfect facet. Re-
search efforts need to be focused on rational combination 
strategies developed on the basis of improved tumor biol-
ogy understanding. Different biomarkers with different as-
says have been tested and approved but the search of an 
ideal biomarker remains ongoing. Deeper insight into the 
immune evasion mechanisms of tumor cells might add to 
the understanding and development of molecules leading 
to superior outcomes. 

FUTURE DIRECTIONS 

In addition to the immune checkpoint inhibitors, various 
other forms of immunotherapies have also been investi-
gated in different phases of clinical trials like tumor di-
rected monoclonal antibodies, tumor vaccines, T cell thera-

pies, nanomaterials and bi-specific T-cell engagers (BiTEs) 
and drugs targeting other checkpoints. 

Chimeric antigen receptor (CAR)-T cell therapy, part of 
adoptive cell transfer therapy, utilizes the genetically mod-
ified T cells for their actions against tumor cells. Gene cod-
ing the modified chimeric proteins are inserted into the 
autologous T cell using viral or non-viral vectors. These 
proteins are able to bind to various cell surface antigens or 
receptors present on tumor cells.122 CAR-T cells have been 
demonstrated to be successful in hematological malignan-
cies but their response rates in solid tumors have been low, 
probably due to low levels of tumor infiltrations, lack of 
tumor specific antigens and risk of cytokine release syn-
drome.123 Clinical trials for CAR-T cells in lung cancer have 
tested their role in malignant pleural mesothelioma due to 
the availability of specific MSLN antigen but role of CAR-T 
cells in NSCLC has yet not been tested in clinical trials.122 

Additionally, TCR (T cell receptor) gene engineered T cells, 
which have TCR specifically directed towards cancer anti-
gens have also been tested in preclinical models. One of 
the antigens used for the development of TCRs has been 
Kita-Kyushu Lung Cancer Antgen-1 which is one of its fam-
ily proteins, not expressed on healthy tissues.124 PD-1 gene 
disrupted T cells (using CRISPR-Cas9 technology) have also 
been tested in phase I trial and demonstrated to be safe 
and feasible.125 Another form of cellular immunotherapy is 
TILs (tumor infiltrating lymphocytes). These lymphocytes 
are usually very few hence, for using this method TILs are 
expanded in vitro and later reinjected in large amounts. 
Autologous TIL therapy requires prior lymphocyte deple-
tion. The acceptable safety profile of TIL therapy has been 
demonstrated in phase 1 study where TILs were adminis-
tered with nivolumab.126 

Bispecific T cell engager (BiTE) platforms is another of 
targeted immunotherapy where two different antigens are 
linked together. One end of the protein binds with the tu-
mor antigens whereas the other end binds with the T cells 
and leads to immune activation.127 AMG 757 (Tarlatamab) 
is a bispecific T-cell engager targeting delta like ligand 3 
(DLCC3) in SCLC. Phase I results of AMG 757 have demon-
strated acceptable safety profile and trial is still ongoing.128 

Bispecific antibody, Y111, which targets PD-L1 and CD3 has 
also been tested in preclinical setting where it has been 
demonstrated to be effective in inducing tumor cell cyto-
toxicity.129 

In addition to the BiTEs, the bispecific monoclonal an-
tibodies which have two different targets have also been 
discovered and tested. Amivantamab, targeting EGFR and 
MET has been given an accelerated approval by the FDA 
for exon 20 insertion mutations, which are inherently re-
sistant to the conventional EGFR TKIs,130 following the re-
sults of CHRYSALIS trial which demonstrated an ORR of 
40% and DOR of 11.1 months.131 Another example is Zeno-
cutuzumab (MCLA-128) which is a NRG1 fusion targeting 
bispecific antibody being tested in NRG1 positive solid tu-
mors.132 

Apart from the conventional biomarkers, neoantigen 
load, ctDNA and MSI-H/MMR (mismatch repair) are also 
being studied as potential biomarkers for ICIs therapy.133 
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Table 2. Emerging checkpoints and their major active trials involving NSCLC.          

Checkpoint Ligand Function NCT Trials 

TIGIT CD112, 
CD155 

Competes with CD226 to deliver an inhibitory signal, thereby causing 
an immunosuppressive effect by decreasing T-cell activation, function 
and inhibition of NK cell activity86‑88 

NCT05537051, 
NCT05102214, 
NCT04047862, 
NCT05120375, 
NCT05417321, 
NCT05073484, 
NCT04457778, 
NCT05390528, 
NCT04374877, 
NCT04761198, 
NCT03667716, 
NCT04995523 

TIM-3 Galectin-9, 
HMGB, 
CAECAM, 
PtdSer 

Negative regulator of T-cell response, improves antigen cross 
presentation, expressed on dysfunctional and exhausted T-cells.88,95 

May be associated with PD-L1 resistance.96 

NCT03489343, 
NCT05236608 
NCT05357651, 
NCT03311412, 
NCT03752177, 
NCT03708328, 
NCT02817633, 
NCT04623892, 
NCT05645315, 
NCT04931654, 
NCT05144698, 
NCT04773951, 
NCT02608268, 
NCT03307785, 

LAG-3 MHC-II Negatively regulates the T-helper cell activation and proliferation, 
aiding tumor cells to evade immune surveillance97‑101 

NCT03252938 
NCT05101109 
NCT05078593 
NCT05400265 
NCT04618393 
NCT04706715 
NCT04641871 
NCT04140500 
NCT03250832 
NCT05134948 
NCT01968109 
NCT02966548 
NCT03744468 
NCT05144698 
NCT05410717 
NCT04374877 
NCT03219268 
NCT03849469 
NCT02465060 
NCT03607890 
NCT03678883 
NCT05346276 
NCT03625323 

4-1BB (CD137) 4-1BBL Known to have immunomodulatory and potential anti-tumor effects as 
it can stimulate and amplify proliferation and function of cytotoxic T-
cells.102,103 

NCT05117242 
NCT05360381 
NCT05638334 
NCT05159388 
NCT04442126 
NCT04762641 
NCT04903873 
NCT03809624 
NCT04937153 
NCT05040932 
NCT04144842 
NCT05523947 
NCT04839991 
NCT04121676 

NKG2A HLA-E When activated by its ligand, HLA E (MHC Class I molecule) it 
dimerized with CD94 and triggers the suppression of NK cells and T 
cells.104 

NCT04914351, 
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Checkpoint Ligand Function NCT Trials 

OX-40 (CD134) OX-40L 
(CD252) 

OX40 and its ligand depend on the cell its present on and the 
interaction has a strong immunologic and anti-tumor effect due to the 
promotion of proliferation of immune cells105,106 

NCT04991506 
NCT04730843 
NCT04215978 
NCT04198766 
NCT03894618 
NCT05105971 
NCT03831295 
NCT05229601 
NCT03739931 
NCT04952272 
NCT04387071 
NCT03217747 

A2aR A2aR Catabolism of ATP by CD73 in tumor microenvironment leads to high 
levels of adenosine which interacts with its receptors leading to 
immune suppression and exhaustion and tumor growth107,108 

NCT03207867 

VISTA VSIG,109 

to be 
identified 

Inhibits T-cell proliferation and cytokine and chemokine production by 
T-cells110,111 

NCT03849469, 
NCT05082610, 
NCT03740256, 
NCT04475523 

B7H3 (CD276) To be 
identified 

Negatively regulates T-cell function and plays a role in T-cell inhibition, 
preferentially T helper cells112‑114 

NCT05276609 
NCT05276609 
NCT05190185, 
NCT04842812, 
NCT05293496, 
NCT04145622, 
NCT05341492, 
NCT05405621 

HMGB1- high-mobility group protein B1, CEACAM- carcinoembryonic antigen cell adhesion molecule, PtdSer- phosphatidyl serine, LAG-3 - Lymphocyte activation Gene-3, NKG2A- 
Natural killer group protein 2A, ATP- adenosine triphosphate, VISTA- V-domain Ig suppressor of T-cell activation. 

Figure 1. Future and current checkpoint pathways and ongoing development in therapeutics either stimulating             
or inhibiting the interaction between checkpoints and their ligands        120  

Newer methods of resistance are also being studied and tar-
geted like STK11/LKB1134 and JAK2/STAT.135 
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